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Abstract: Bulk formability limits in the in-plane principal strain space and in the space of effective strain 

vs. stress triaxiality are characterized by an uncertainty region in which cracks may be triggered by tension 

(mode I) or by out-of-plane shear (mode III). The obtainment of experimental data in this region is a long-

known problem, hence this document has as main objective the presentation of a new upset bulk formability 

test geometry that can effectively contribute to the characterization of the formability limits of bulk metal 

forming in states of biaxial tension, completing the characterization of these limits for the whole range of 

stress states in which cracking on free surfaces may occur. Moreover, this work also presents an analytical 

expression for shifting the fracture forming limit line for mode III (OSFFL) in the in-plane principal strain 

space into a hyperbolic fracture limit curve in the effective strain vs. stress-triaxiality space. The overall 

utilized methodology combines experimentation together with analytical and numerical modelling. The 

contents of this work are a step towards reducing the current lack of knowledge regarding failure by fracture 

in bulk metal forming parts subject to stress triaxiality values beyond uniaxial tension. Results show that a 

new uncoupled ductile damage criterion built upon the combination of the integrands of the normalized 

Cockcroft-Latham and McClintock criteria can be successfully used to model the physics of bulk metal 

forming limits to fracture for the entire range of stress triaxiality values corresponding to fracture initiation 

on free surfaces. 
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1. INTRODUCTION 

Apart from special purpose metal forming 

processes in which cracks and formation of new 

surfaces are needed for the tools to move and for 

the process to be carried out, such as blanking, 

piercing, and fine blanking, in all the remaining 

metal forming processes cracks are undesirable 

and must be prevented at the design stage. Crack 

triggering and propagation in metal forming 

happens as the result of a competition between 

the accumulation of damage due to tensile 

stresses, in-plane shear stresses, and out-of-plane 

shear stresses. These three macroscopic sources 

of damage are related to the well-known crack 

opening mechanisms of fracture mechanics: 

mode I – tension, mode II – in-plane shear, and 

mode III – out-of-plane shear [1]. 

For the case of bulk forming, results obtained by 

Kuhn et al. [2] and plotted in the principal in-

plane strain space, 𝜀1 = 𝑓(𝜀2), showed that the 

fracture locus in tensile, rolled, and cylindrical 

upset test specimens fall on a straight line falling 

from left to right parallel to the loading path of 

uniaxial compression (refer to the line with slope 

‘-1/2’ labelled as ‘1’ in Fig. 1a). Since both 

vertical and inclined cracks found in the outer 

surface of the upset compression test specimens 

do not run radially, one can easily perceive the 

crack opening mechanism as being based on out-

of-plane shear, as it was originally speculated by 

Kobayashi [3]. 

Later, Erman et al. [4] proposed the existence of 

a bilinear fracture locus resulting from the 

combination of the fracture limit line of slope ‘-

1/2’ and a new fracture limit line of slope ‘-1’ 

parallel to the loading path of pure shear and 

labelled as ‘2’ in Fig. 1a. Because this second 

fracture line is typical of failure by tension (mode 

I), it may be concluded that loading paths 

crossing the fracture loci built upon the two 

straight lines of slope ‘-1/2’ or ‘-1’ will 

eventually result in failure by fracture with crack 

opening modes due to out-of-plane shear (mode 

III) and tension (mode I), respectively. 

The link between the above-mentioned failure 

mechanisms and the critical values of ductile 

damage was performed by Martins et al. [1], who 

demonstrated that the slopes ‘-1/2’ and ‘-1’ are 

directly related to the normalized Cockcroft-

Latham [5],[6] and McClintock [7],[8] 

uncoupled ductile damage criteria, respectively. 

Microstructured-based coupled ductile damage 

criteria (e.g., Tvergaard and Needleman [9]) and 

macromechanics-based coupled criteria (e.g., 

Kachanov [10], or Lemaitre [11]) will be left out 

of this work’s discussion because despite their 

merits in adjusting the stress response of the 

materials as a function of the accumulated 

damage, they do not have an explicit direct link 
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to the three different fracture mechanics’ crack 

opening modes. Additionally, these are more 

difficult to calibrate due to the relatively large 

number of parameters involved and have an 

algebraic treatment that makes them very 

difficult or even impossible to be handled within 

the objectives of this paper.  

Another type of representation for the bulk metal 

forming loading paths that has roots in the 

pioneering works of Hancock and Mackenzie 

[12] and Vujovic and Shabaik [13] is the 

effective strain vs. stress-triaxiality space, 𝜀̅ =

𝑓(𝜂), with 𝜂 = 𝜎𝑚/�̅�. In this alternative 

representation the fracture loci are given by 

curved hyperbolic-like lines (Fig. 1b) and are not 

limited to plane stress loading conditions. The 

transformation of the fracture locus correspond-

ing to mode I from the principal strain space to 

the effective strain vs. stress triaxiality space can 

be performed analytically [14] if plane stress 

loading conditions are assumed, as it is the case 

of sheet metal forming. Nevertheless, the plane 

stress assumption is valid and applicable to 

cracks being triggered on free surfaces of bulk 

metal forming parts. 

Although recent studies point mostly to the 

occurrence of failure by tension in bulk metal 

forming for test samples subjected to states-of-

stress in-between uniaxial tension (𝜂 = 1/3) and 

plane strain (𝜂 = 1/√3) [14], it should not be 

forgotten that experiments carried out by Kuhn et 

al. [2] and Gouveia et al. [15] revealed the 

existence of unique fracture forming limits 

defined by a single straight line of slope ‘-1/2’, 

compatible with the normalized Cockcroft-

Latham ductile damage criterion and the crack 

opening mode III (out-of-plane shear). This was 

perceived by Erman et al. (1983) to vary with 

both the material and temperature. The two 

different sets of results give rise to the 

‘uncertainty region’, highlighted in Fig. 1. 

Erman et al. [4] addressed this problem in their 

original paper, concluding that the ‘deviations in 

the small strain region’ could be explained by 

means of the Marciniak and Kuczyński [16] 

model for localized thinning if two types of small 

inhomogeneities were considered in the axial and 

radial directions. Claiming that the application of 

this model with inhomogeneities in the radial 

direction could reproduce the fracture forming 

line with a slope of ‘-1/2’, they suggested that the 

inhomogeneities in the axial direction could 

justify the already mentioned deviations. 

However, this methodology consists of using a 

localized instability approach directly linked to 

the plane stress loading conditions of sheet metal 

forming to the three-dimensional stress loading 

conditions of bulk metal forming, in which 

fracture is not preceded by necking. This 

probably explains the inconclusive circum-

stances that these authors claimed to determine 

the application of the model with one type of 

inhomogeneities over another. 

To obtain experimental data in the ‘small strain 

region’ of the principal strain space and support 

the discussion on the deviations of the fracture 

loci in that region, Erman et al. [4] proposed a 

partial extrusion test capable of providing equal 

biaxial tensile strains at fracture. By applying the 

test to AISI 4640 sintered steel powder at room 

temperature, they confirmed that the strains at 

fracture were located on the first quadrant the of 

principal strain space and close to the fracture 

forming line with slope ‘-1/2’. However, the 

obtained fracture strain values were extremely 

small and the region where the cracks were 

triggered is not visible, therefore, making the 

employment of the state-of-the-art digital image 

correlation (DIC) systems unsuitable to perform 

further measurements. 

Similar problems of accessibility to DIC systems 

are found with the ring expansion test specimen 

developed by Silva et al. [14], which is also 

capable of providing fracture strains in the first 

quadrant of the principal strain space. In this 

case, however, cracks are triggered at the inner 

ring surface, which is in contact with the die, 

resulting in negative values of stress triaxiality. 

The above discussion justifies the intention of 

revisiting the fracture forming limits in bulk 

metal forming under biaxial tension by 

Fig. 1 Schematic representation of the formability limits in (a) the in-plane principal strain space and (b) the space 

of effective strain vs. stress triaxiality, evidencing the uncertainty region shaded in light blue. 
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presenting an innovative upset test geometry that 

allows measuring the evolution of strains in a 

free surface of interest by DIC and by combining 

the results of these tests with fractography of the 

cracked surfaces using a scanning electron 

microscope (SEM). The onset of fracture in the 

‘uncertainty region’ is discussed in the light of 

the fracture forming lines corresponding to crack 

opening by modes I and III, and a single 

uncoupled ductile damage criterion is proposed 

to modulate the material and loading preferences 

for either of the crack opening modes. 

An analytical transformation to convert the 

fracture forming limit associated to mode III 

(straight line with slope ‘-1/2’) from the principal 

strain space into the effective strain vs. stress 

triaxiality space is also presented for the first 

time ever. This transformation, together with that 

earlier developed by Silva et al. [14] to the 

fracture forming limit associated to mode I will 

allow for a simple and fast conversion of the 

fracture loci between the two different spaces. 

Finite element simulation using an in-house 

computer program gives support to the entire 

presentation. 

 

2. MATERIAL AND METHODS 

2.1. Mechanical characterization 

The experimental work was performed on 

commercial aluminum AA7075-T6 that was 

supplied in the form of solid rods with 200 mm 

diameter. The flow stress curve in Fig. 2 was 

determined by means of compression tests 

carried out on cylindrical test specimens with 

25 mm of both height and diameter machined 

from the rods. The tests were conducted at room 

temperature on an Instron SATEC 1200 

hydraulic testing machine with a constant 

moving crosshead speed of 5 mm/min 

(0.083 mm/s). 

A molybdenum disulfide (MoS2) based lubricant 

was applied on the top and bottom surfaces of the 

specimens for assurance of near frictionless 

conditions and the compression platens had an 

average roughness, 𝑅𝑎, of 0.06 mm. 

 

2.2. Bulk formability tests and methodology 

The bulk formability tests were carried out at 

room temperature on the same hydraulic testing 

machine that had been used before in the 

determination of the material flow stress. 

Axially-loaded conventional bulk formability 

specimens (cylindrical, tapered, and flanged) 

were tested along with the newly proposed test 

specimen that will be hereafter denoted as the 

‘barreled ring specimen’. These were machined 

from the supplied AA7075-T6 aluminum rods 

according to the geometries provided in Table 1, 

and later degreased before being compressed 

between flat parallel platens with a crosshead 

speed of 5 mm/min. 

As results will show later, the barreled ring 

specimen allows, for the first time ever in bulk 

metal forming, for crack triggering under biaxial 

tension, while allowing for the utilization of DIC 

 
Geometry (mm) Cylindrical Tapered Flanged Barreled ring 

H 25 25 25 25 50 

D 25 30 35 35 170 

d – 25 25 25 90 

t – 5 5 5 6 

h – – – – 28 

Di – – – – 158 

Lubrication Dry Dry Dry Dry Dry 

Identification c t1 t2 f br 

 

Table 1 Geometry and lubrication conditions for the bulk formability test specimens 

Fig. 2 Flow stress of the AA7075-T6 aluminum alloy. 



4 

 

to 

determine the corresponding strains on the outer 

free surface. 

The evolution of the on-surface (in-plane) strains 

with time during the upset formability tests was 

determined by means of a Q-400 3D DIC system 

from Dantec Dynamics equipped with two  

6-megapixels resolution cameras with 50.2 focal 

lenses and f/8 aperture (Fig. 3a). For this purpose, 

the test specimens were made as large as possible 

to minimize the curvature on the surfaces of 

interest where the cracks were triggered, and the 

measurements were performed. These measuring 

regions were painted in white and subsequently 

sprayed along the original gauge length with a 

stochastic black speckle pattern. During testing 

the measuring regions were illuminated with a 

spotlight and images were acquired with a 

frequency of 10 Hz (10 images per second). 

Combining the evolutions of the on-surface 

strains and the upset force with time, the exact 

instant of time at which cracks were triggered 

was acquired (see Fig. 3b). This experimental 

procedure was developed by Magrinho et al. [17] 

and relies on the fact that a drop in the upset force 

marks the onset of cracking. The following crack 

propagation comes also with a sudden relief of 

stresses which makes it impossible for the DIC 

system to correlate the digital images obtained 

from the cracked regions of the specimens with 

accuracy. 

The evolution of the strain loading paths the in 

principal strain space, 𝜀1 = 𝑓(𝜀2), (Fig. 3c) is then 

computed by combining the evolutions of the 

major and minor strains with time. The 

alternative evolutions in the strain vs. stress-

triaxiality space, 𝜀̅ = 𝑓(𝜂), (Fig. 3d) are obtained 

from the transformation of the loading paths 

assuming plane stress conditions, which is valid 

for the free outer surfaces where cracks are 

triggered. 

 

2.3. Numerical simulation 

Numerical simulations of the newly proposed 

specimen geometry were performed with the 

finite element computer program i-form, an in-

house software built upon the irreducible finite 

element flow formulation [18]. The specimens 

were assumed as deformable, isotropic, 

rotationally symmetric objects and their cross 

sections were discretized by means of quadrilat-

eral elements. Refinement of the meshes in the 

regions where cracks are triggered and 

subsequently propagated were performed by 

means of a quadtree subdivision strategy. 

Fig. 4 includes an example of the finite element 

model utilized in the numerical simulation of the 

barreled ring at the beginning and end of testing. 

The model contains approximately 5600 ele-

ments, and the simulation took approximately 1h 

to be finished on a standard laptop equipped with 

an Intel i5-7200U CPU (2.5 GHz) processor. 

The compression platens were modelled as rigid 

objects and their contour was discretized by 

means of linear contact-friction elements. 

Friction was included by means of the law of 

Fig. 3 Methodology to determine and plot the results obtained from the bulk formability tests: (a) schematic 

representation of the experimental setup utilized in digital image correlation (DIC), (b) combination of the load-time 

and strain-time evolutions showing the onset of cracking, (c) typical plot of a strain loading path determined by DIC 

in the principal strain space and (d) alternative representation in the effective strain vs. stress-triaxiality space. 
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constant friction, 𝜏𝑓 = 𝑚𝑘, where 𝑘 is the shear 

flow stress and 𝑚 is the friction factor. A value 

of 𝑚 equal to 0.1 was used after checking the 

finite element predicted forces that best matched 

the experimental measurements. 

The accumulation of ductile damage for the test 

specimens that exhibit cracking by tension (mode 

I), 𝐷𝑀𝑐,  was calculated by means of the 

uncoupled criterion due to McClintock [7],[8], 

whereas the accumulation of ductile damage for 

the test specimens that exhibit cracking by out-

of-plane shear (mode III), 𝐷𝑁𝐶𝐿,  was determined 

by means of the normalized Cockcroft-Latham 

[5],[6] uncoupled damage criterion. Both criteria 

are included in the finite element computer 

program by means of the following expressions, 

𝐷𝑀𝑐 = ∫
𝜎𝑚

�̅�

�̅�

0

𝑑𝜀 ̅ (1) 

𝐷𝑁𝐶𝐿 = ∫
𝜎1

�̅�

�̅�

0

𝑑𝜀  ̅ (2) 

where 𝜎𝑚 is the hydrostatic stress, �̅� is the 

effective stress, 𝜎1 is the major principal stress, 

and 𝜀 ̅is the effective strain. 

 

3. RESULTS AND DISCUSSION 

3.1. Formability limits in the principal strain 

space 

The experimental strain loading paths up to 

fracture were determined according to the 

methodology described in Section 2.2, which 

combines the in-plane principal strains vs. time 

evolutions obtained from DIC with the force vs. 

time evolutions obtained from the load cell. Fig. 

5a, includes these results for the new barreled 

ring test specimen. 

The experimental strain loading paths up to 

fracture that were determined from DIC for the 

entire set of formability tests that are listed in 

Table 1 are shown in Fig. 5b. As seen, the frac-

ture strains on the free surfaces of the cylindrical 

and of the four different tapered test specimens 

fall on a line with a slope equal to ‘-1/2’ and 

related to crack opening by out-of-plane shear 

(mode III), which is in close agreement with the 

one obtained by Oh and Kobayashi [19] for 

AA7075-T6 aluminum alloy, whereas the two 

flanged test specimens fall on a line with a slope 

equal to ‘-1’ and related to crack opening by 

tension (mode I). These results point out to the 

existence of a bilinear fracture locus, as it was 

originally proposed by Erman et al. [4] and re-

cently confirmed by Silva et al. [14]. 

The problem with the bilinear fracture loci 

concept is the results obtained for the new 

barreled ring test specimen, which do not fall on 

any of the above-mentioned fracture forming 

limit lines. In fact, the strain values of fracture 

obtained for this specimen are located above the 

fracture forming line with slope ‘-1/2’. 

This non-compliance of the barreled ring with 

either crack opening mode fracture forming limit 

line manifests the existence of an ‘uncertainty 

region’ that can slightly spread beyond the 

triangular area limited by the two fracture 

forming lines (see Fig. 1) corresponding to the 

McClintock (mode I) and normalized Cockcroft-

Latham (mode III) damage criteria, suggesting a 

competition between fracture modes. There is, 

therefore, a need to investigate the possibility of 

developing a single uncoupled ductile damage 

criterion for bulk metal forming that can replicate 

the loading condition preferences for either of the 

crack opening modes or for the combination of 

the crack opening modes within the uncertainty 

region. 

 

Fig. 5 (a) Summary of the methodology for 

determining the strain loading paths up to fracture 

for the new barreled ring specimen and (b) the strain 

loading paths and strain values at fracture for the 

entire set of tests listed in Table 1. Note: the images 

of DIC correspond to the instant of time immediately 

before fracture and ‘Point 1’ is the location where 

cracks were triggered. 

Fig. 4 Finite element model of the upsetting of the 

new barreled ring specimen at the beginning (left) 

and end of testing (right) with a detail of the region of 

interest where cracks are triggered and propagated. 
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3.2. Formability limits in the effective strain 

vs. stress triaxiality space 

The loading paths can alternatively be plotted in 

the effective strain vs. stress-triaxiality space, 𝜀̅ =

𝑓(𝜂). By focusing only on the fracture strains, the 

transformation of the straight fracture forming 

limit line with slope ‘-1’ (mode I) from the 

principal strain space to the effective strain vs. 

stress-triaxiality space can be performed analyti-

cally by means of the following expression 

derived in [14], 

𝜀�̅� =
2

3

(𝜀𝜃𝑓 + 𝜀𝑧𝑓)

𝜂
=

𝐷𝑐𝑟𝑖𝑡
𝑀𝑐

𝜂
 (3) 

The above expression gives rise to a hyperbolic 

fracture forming limit, where the subscript ‘𝑓’ is 

utilized for the different strains at fracture and the 

subscript ‘𝑐𝑟𝑖𝑡’ is used for the critical accumu-

lated value of damage up to fracture. 

Following a similar approach, the transformation 

of the straight fracture forming limit line with 

slope ‘-1/2’ (mode III) can be expressed as fol-

lows (refer to equation (2), under the assumption 

of proportional strain loading paths), 

𝜀�̅� =
𝐷𝑐𝑟𝑖𝑡

𝑁𝐶𝐿

𝜎1/�̅�
 (4) 

where 𝐷𝑐𝑟𝑖𝑡
𝑁𝐶𝐿  is the critical value of accumulated 

damage according to the normalized Cockcroft-

Latham ductile damage criterion.  

However, equation (4) is not adequate to perform 

the required transformation from the principal 

strain space into the effective strain vs. stress-

triaxiality space because it does not include an 

explicit dependency on stress-triaxiality 𝜂 =

𝜎𝑚 �̅�⁄ . 

To obtain such an expression, one must start from 

the following equation for the 𝜎1 �̅�⁄  ratio given in 

[1] and applicable for isotropic metallic materials 

under the Levy-Mises constitutive equations, 

𝜎1

�̅�
=

𝜂

𝜎𝑚/𝜎1
=

2 + 𝛽

(1 + 𝛽)
𝜂 (5) 

Then, it is necessary to write the strain loading 

path slope 𝛽 = 𝑑𝜀2 𝑑𝜀1⁄  as a function of the stress-

triaxiality 𝜂. This full derivation is included in 

Appendix A and eventually allows writing the 

𝜎1 �̅�⁄  ratio as a function of 𝜂 (Fig. 6), 

𝜎1

�̅�
=

(27𝜂2 − 6) − 3𝜂√−3(9𝜂2 − 4)

9𝜂2 − 3𝜂√−3(9𝜂2 − 4)
𝜂 (6) 

By replacing (6) into (5), the required transfor-

mation of the straight fracture forming limit line 

with slope ‘-1/2’ from the principal strain space 

into the effective strain vs. stress-triaxiality space 

is obtained as, 

𝜀�̅� = (
9𝜂2 − 3𝜂√−3(9𝜂2 − 4)

(27𝜂2 − 6) − 3𝜂√−3(9𝜂2 − 4)
)

𝐷𝑐𝑟𝑖𝑡
𝑁𝐶𝐿

𝜂
 (7) 

The resulting fracture forming limit correspond-

ing to mode III is also hyperbolic-like, but the 

asymptote is in 𝜂 = − 1 3⁄  and not in 𝜂 = 0, as it 

is for the case of mode I (3). 

Fig. 7 includes the fracture forming limits corre-

sponding to cracking by modes I and III after 

being transformed from the principal strain space 

to the effective strain vs. stress-triaxiality space 

together with the values of the effective strain at 

fracture obtained for the entire set of tests listed 

in Table 1. 

As seen, the bilinear fracture loci concept is 

suitable to model all the different test specimens 

apart from the new barreled ring. This requires a 

closer look at the deformation mechanics of this 

specimen in the following section. 

 

Fig. 7 Representation of the fracture loci 

corresponding to cracking by mode I and III together 

with the values of effective strain at fracture for the 

entire set of test cases included in Table 1. 

 

3.3. Deformation mechanics of the new 

barreled ring specimen 

The fracture initiation site of the new barreled 

ring specimen is located on the equatorial free 

surface and is not covered by dies or other tool 

parts. This allows employing the DIC system to 

measure the strain loading paths up to failure by 

fracture during the entire formability tests. 

Fig. 8a and 8b show the finite element predicted 

distributions of the longitudinal, 𝜎𝑧, and radial, 

𝜎𝑟, stresses at the onset of fracture. As seen, 𝜎𝑧 >

0 on the outer equatorial free surface due to a 

bending moment created by the compressive 

forces acting on the upper and bottom surfaces of 

the ring (refer to the black arrows in Fig. 8a). This 

result combined with the circumferential tensile 

stresses, 𝜎𝜃 > 0, originated by ring expansion 

during upsetting proves that the barreled ring 

specimen is in fact subjected to biaxial tension on 

the outer equatorial free surface where the cracks 

are triggered. 

Fig. 6 Variation of the 𝜎1 �̅�⁄  ratio with stress 

triaxiality. 
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Conversely, the distribution of 𝜎𝑟 (Fig. 8b) con-

firms the existence of plane stress loading 

conditions, 𝜎𝑟 = 0, on the outer and inner 

equatorial free surfaces, and the presence of 

values 𝜎𝑟 ≠ 0 within the wall thickness. This last 

result (𝜎𝑟 ≠ 0) is important because it indicates 

that the barreled ring specimen can replicate the 

three-dimensional stress states that are typical of 

bulk metal forming. 

Since, according with the proposed definition of 

uncertainty region, fracture in this region may be 

triggered by either tension (mode I) or through-

thickness shear (mode III), Fig. 8c and Fig. 8d 

show the finite element predicted distribution of 

damage according to the McClintock and 

normalized Cockcroft-Latham criteria, respec-

tively. Results show that both criteria can 

correctly predict the region of the specimen 

where the cracks are triggered, but their maxi-

mum accumulated values of damage are greater 

than the critical damages at fracture derived from 

the biaxial fracture loci of Fig. 7. For instance, 

for the case of the normalized Cockcroft-Latham 

criterion, 𝐷𝑚𝑎𝑥
𝑁𝐶𝐿 = 0.18 while the fracture locus of 

mode III corresponds to 𝐷𝑐𝑟𝑖𝑡
𝑁𝐶𝐿 = 0.10. For the 

McClintock criteria the values are 𝐷𝑚𝑎𝑥
𝑀𝑐 = 0.10 

and 𝐷𝑐𝑟𝑖𝑡
𝑀𝑐 = 0.04. 

Despite the above-mentioned differences be-

tween the maximum accumulated and the critical 

values of damage at fracture for the normalized 

Cockcroft-Latham criterion, the crack opening 

mode by out-of-plane shear (mode III) is 

compatible with the numerical and scanning 

electron microscope (SEM) observations. This is 

shown in Fig. 9b where finite elements predict an 

inclined onset of fracture typical of crack 

opening by out-of-plane shear (mode III)  and the 

picture from SEM (refer to ‘A’ in Fig. 9c) shows 

a smooth cracked surface typical of shear. 

Further crack propagation along the radial 

direction and the corresponding images from 

SEM (refer to ‘B’ in Fig. 9c) showing signs of a 

dimple-based morphology are compatible with a 

tension-based mechanism (mode I). 

 

3.4. A new uncoupled ductile damage 

criterion for bulk forming 

The main conclusion derived from Fig. 7 is that 

neither the McClintock (mode I) nor the 

normalized Cockcroft-Latham (mode III) ductile 

damage criteria can replicate the experimental 

values of effective strain at fracture 𝜀�̅� for the 

entire range of stress-triaxiality values −1 3⁄ ≤

𝜂 ≤ 2 3⁄ . 

As seen, the normalized Cockcroft-Latham crite-

rion works well in the range −1 3⁄ ≤ 𝜂 < 1 3⁄ , 

where cracks are triggered by out-of-plane shear 

(mode III), and the McClintock criterion works 

well in the range 1 3⁄ ≤ 𝜂 ≤ 1 √3⁄ , where cracks 

are triggered by tension (mode I). However, none 

of the criteria is successful in replicating the 

effective strain at fracture 𝜀�̅� of the new barreled 

ring specimen (where, 1 √3⁄ < 𝜂 ≤ 2 3⁄ ), because 

the experimental values surpass the fracture 

locus corresponding to modes I and III. 

In addition to what was said above, the suitability 

of the McClintock criterion for the range 1 3⁄ ≤

𝜂 ≤ 1 √3⁄  can be called into question due to the 

work of Kuhn et al. [2], which points out to a 

single rather than dual fracture locus. 

The previously mentioned ‘uncertainty region’ is 

the result of all these contradictory results that 

have been reported in the literature since the 

early 1970’s plus the difficulty in modelling the 

experimental values of 𝜀�̅� obtained with the new 

barreled ring specimen. Thus, a new uncoupled 

Fig. 8 Finite element predicted distribution of (a) 

longitudinal stress, 𝜎𝑧, (b) radial stress, 𝜎𝑟,  

(c) ductile damage according to the McClintock 

criterion and (d) ductile damage according to the 

normalized Cockcroft-Latham criterion. 

      

      

     

       

     

    

      

      

      

       

     

      

     

    

      

      

      

      

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

Fig. 9 (a) Picture of the barreled ring specimen after 

cracking, (b) finite element predicted onset and 

propagation of cracks and (c) fractography details 

disclosing crack opening by out-of-plane shear and 

subsequent propagation by tension. 
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ductile damage criterion is needed to properly 

handle the fracture forming limits of bulk 

forming for 𝜂 ≥ 1 3⁄ .  

A recent work [20] focused on the development 

of a ductile damage criterion that works for the 

entire range of stress-triaxiality values suggests 

the combination of the integrands 𝜏𝑚𝑎𝑥 �̅�⁄  and 

𝜎1 �̅�⁄  of the normalized maximum shear and 

normalized Cockcroft-Latham criteria, as 

follows, 

(𝐶1 (
𝜏𝑚𝑎𝑥

�̅�
) + (1 − 𝐶1) (

〈𝜎1〉

�̅�
))

𝐶2

𝜀�̅� = 

(𝐶1 (
1

√3
𝑐𝑜𝑠 [

𝜋

6
�̅�])

+ (1 − 𝐶1) (
〈3𝜂 + 2𝑐𝑜𝑠 [

𝜋
6

(1 − �̅�)]〉

3
))

𝐶2

𝜀�̅� = 𝐶3 

(8) 

where 𝐶𝑖 are parameters to be experimentally 

determined and �̅� is the normalized Lode angle. 

Another recently proposed uncoupled damage 

criterion [21] results of the combination of the 

normalized Cockcroft-Latham and maximum 

shear criteria, with the authors claiming these are 

responsible for the coalescence of voids under 

tension and shear, respectively, and adding an 

exponential function of stress triaxiality to model 

void growth as follows, where 𝐶𝑖 are parameters 

to be experimentally determined, 

[(
2𝜏𝑚𝑎𝑥

�̅�
)

𝐶1

+ ⟨
𝜎1

�̅�
− 1⟩]

𝐶2

𝑒𝑥𝑝 (𝐶3 (𝜂 −
1

3
)) 𝜀�̅� 

= 𝐶4 

(9) 

However, due to the relation between the 

normalized Cockcroft-Latham criterion and the 

crack opening mechanism by out-of-plane shear, 

it may be concluded that the physics behind (8) 

is based on a weighted combination of two shear-

based criteria. The same happens for (9), along 

with the fact that the stated control mechanisms 

of void growth and coalescence are not 

compatible with the theory developed by 

McClintock [8], where voids grow and coalesce 

controlled by the same parameters in the two 

stages, whether this happens because of tension, 

shear, or a combination of both. 

Still, equation (8) is interesting because it 

provides a direct link between the integrand 𝜎1 �̅�⁄  

of the normalized Cockcroft-Latham criterion 

and the normalized Lode angle �̅�, which can be 

rewritten in terms of the Lode angle parameter 𝜉, 

as follows, 

𝜎1

�̅�
=

3𝜂 + 2𝑐𝑜𝑠 [
𝜋
6

(1 − �̅�)]

3

= 𝜂 +
2

3
𝑐𝑜𝑠 (

𝑐𝑜𝑠−1 𝜉

3
) 

(10) 

The graphical representation of (10) is shown in 

Fig. 10 and has some similarities with the relation 

between the stress-triaxiality, 𝜂, and the Lode 

angle parameter [22], 𝜉, which is included in the 

figure for comparison purposes. However, in 

contrast to 𝜂 = 𝑓(𝜉), it may be concluded that 

𝜎1 �̅�⁄ = 𝑓(𝜉) is not a true function for stress states 

beyond uniaxial tension (i.e., for 𝜎1 �̅�⁄ > 1 or, 

1 3⁄ ≤ 𝜂 ≤ 2/3) because different values of 𝜉 can 

result in the same values of 𝜎1 �̅�⁄ . 

Since the concept of fracture mode competition 

suggests an intertwining of mode I and III 

beyond uniaxial tension, similar to what was 

proposed in [20] and [21], a new uncoupled duc-

tile damage criterion may be proposed by 

combining the integrands of different criteria, 

one of them being the normalized Cockcroft-

Latham one, since it presents a great suitability 

for out-of-plane shear-triggered cracking 

(−1 3⁄ ≤ 𝜂 < 1 3⁄ ). However, instead of using 

two shear-based criteria, a function that accounts 

for the dilatational effects on void growth and 

coalescence (that are directly related with crack 

opening by tension) should be considered when 

these effects start to be relevant (𝜂 ≥ 1 3⁄  – the 

uncertainty region). This justifies the following 

expression for the critical value of accumulated 

damage 𝐷𝑐𝑟𝑖𝑡
𝑛𝑒𝑤 of the new criterion, 

𝐷𝑐𝑟𝑖𝑡
𝑛𝑒𝑤 = ∫

𝜎1

�̅�
𝑑𝜀̅

�̅�𝑓

0

+ 𝐶 ∫ ⟨𝜂 −
1

3
⟩

2

𝑑𝜀̅
�̅�𝑓

0

 (11) 

where 𝐶 is a parameter to be determined from 

experiments, and the second term in the right-

hand side is a modified version of the 

McClintock criterion which is only active in the 

‘uncertainty region’ and that can ensure a smooth 

transition with the remaining fracture locus 

modelled by the normalized Cockcroft-Latham 

Fig. 10 Variation of (a) 𝜎1 �̅�⁄  and of (b) stress-triaxiality 𝜂 with the Lode angle parameter (adapted from [22]). 
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criterion. The influence of 𝐶 in the overall shape 

of the fracture locus is schematically disclosed in 

Fig. 11a. 

Regarding the modified version of the 

McClintock criterion by means of a quadratic 

term, it is worth noticing that Tai and Yang [23] 

also made use of such a term in the development 

of a damage criterion in which the weighting 

function is based on Lemaitre’s [11] definition of 

strain energy release rate associated to fracture 

initiation by means of void growth and 

coalescence. 

Fig. 11b presents the application of the new 

proposed criterion with a value of 𝐶 = −4.96 to 

the entire set of experimental test cases of Table 

1. The critical damage 𝐷𝑐𝑟𝑖𝑡
𝑛𝑒𝑤 = 0.11 resulting 

from (11) allows establishing a fracture locus that 

is in good agreement with the experimental data 

and that proves the feasibility of using a single 

criterion to define the formability limits by 

fracture in bulk metal forming. 

 

4. CONCLUSIONS 

Upset formability tests performed with a new 

‘barreled ring’ geometry in conjunction with 

digital image correlation (DIC) measurements 

allow determining the experimental strains at 

fracture in bulk metal forming under biaxial 

tension. Combination of these results with others 

available in the literature clearly show that failure 

by cracking on the free surfaces of bulk metal 

forming parts subjected to stress-triaxiality 

values beyond uniaxial tension is characterized 

by a competition between the opening mode I (by 

tension) and the opening mode III (by out-of-

plane shear). The new barreled ring specimen is 

a good example of this competition because 

cracks are triggered by shear and propagate 

radially by tension.  

The new uncoupled ductile damage criterion 

built upon the integrand of the normalized 

Cockcroft-Latham criterion corresponding to 

crack opening by mode III and the modified 

integrand of the McClintock criterion related to 

crack opening by mode I, can surpass the 

difficulties of each individual criteria in 

modelling the formability limits of bulk metal 

forming for the entire range of stress-triaxiality 

values. The parameter 𝐶 included in the new 

uncoupled ductile damage criterion is 

responsible for adapting its critical value at 

fracture as a function of the single or dual crack 

opening modes that characterize the ‘uncertainty 

region’ with stress-triaxiality values beyond 

uniaxial tension. 

A new analytical expression for converting the 

fracture forming limits by mode III from 

principal strain space into the effective strain vs. 

stress-triaxiality space is also derived so that, 

together with a previously derived expression for 

mode I, can be used for the entire range of stress-

triaxiality values. 

 

APPENDIX A 

Stress-triaxiality, 𝜂, can be written in terms of the 

strain loading path slope, 𝛽, for plane stress 

loading conditions prevailing on the free bulk 

forming surfaces where cracks are triggered, 

𝜂 =
(1 + 𝛽)

√3√1 + 𝛽 + 𝛽2
⇒

1 + 𝛽 + 𝛽2

(1 + 𝛽)2
=

1

3𝜂2
 (A1) 

Simplifying the left-term on the right-hand side, 

𝛽 +
1

𝛽
= −2

9𝜂2/2 − 3

9𝜂2 − 3
= 𝑓(𝜂) (A2) 

Multiplying the left- and right-hand sides of (A2) 

by 𝛽, results in the following quadratic equation, 

𝛽2 − 𝑓(𝜂) × 𝛽 + 1 = 0 (A3) 

Because the strain loading paths vary between 

uniaxial compression and equal biaxial tension, 

−2 ≤ 𝛽 ≤ 1 when− 1 3⁄ ≤ 𝜂 ≤ 2 3⁄ . This rela-

tion between the strain loading path slope 𝛽 and 

the stress-triaxiality 𝜂 allows concluding that 

only the following solution of (A3) is physically 

admissible, 

𝛽 =
−2(9𝜂2/2 − 3) − 6𝜂√−(9𝜂2/4 − 1)3

2(9𝜂2 − 3)
 (A4) 

(A4) can now be introduced into equation (5) of 

Section 3.2 to obtain equation (6). The latter can 

then be introduced into equation (4) of Section 

3.2, resulting in equation (7), allowing for the 

expression of the effective strain at fracture �̅�𝑓 as 

Fig. 11 (a) Schematic representation of the new 

proposed ductile damage criterion in the effective 

strain vs. stress-triaxiality space and (b) application 

of the new criterion to the test specimens of Table 1. 
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a function of the stress-triaxiality 𝜂 for mode III 

(out-of-plane shear) of fracture mechanics. 
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